Specifying Stateful Asynchronous Properties for Distributed Programs

Tzu-chun Chen and Kohei Honda

Queen Mary College, University of London

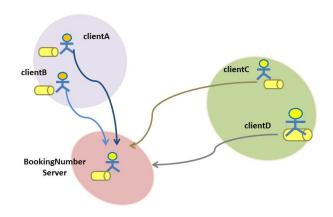
September 2, 2012

The Challenges in Distributed Computing

- To maintain the systems's safe and reliable.
- To understand the interaction behaviours for design, implementation, maintenance and other purposes
- To identify effective specification methods for programs and applications so that trusted parties (e.g. system monitors) can judge the correctness of behaviours.

Dynamic Checking in Asynchronous Environments

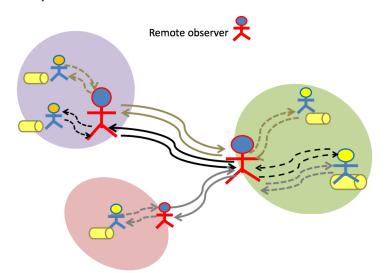
- Dynamic checking is needed during runtime because not all parties in large-scale distributed systems can be statically checked.
- To carry out dynamic checking in asynchronous environments, we consider:
 - complication by the effects of states of remote endpoints.
 - subtleties of asynchronous observations of actions (i.e. the order of actions is not preserved).



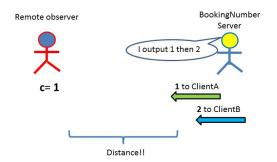
- 1. Specification defined by protocol G
- 2. Having states of observee to mimic it.

```
G_{	ext{sync}} = 	ext{client} 	o 	ext{server} : 	ext{req}(arepsilon).
	ext{server} 	o 	ext{client} : 	ext{ans}(x) \langle x = \mathbf{c}; \ \mathbf{c} := \mathbf{c} + 1 \rangle \langle 	ext{true}; arepsilon \rangle.
	ext{end}
```

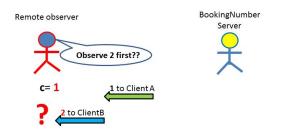
• But, G_{sync} does not work well for a remote observer.....



But, G_{sync} does not work well for a remote observer.....



But, G_{sync} does not work well for a remote observer.....



 An asynchronous specification can work for both synchronous and asynchronous observations.

```
G_{\operatorname{async}} = \operatorname{client} 	o \operatorname{server} : \operatorname{req}(\varepsilon).
\operatorname{server} 	o \operatorname{client} : \operatorname{ans}(x) \langle x \not\in \mathbf{c}; \ \mathbf{c} := \mathbf{c} \cup \{x\} \rangle \langle \operatorname{true}; \varepsilon \rangle.
end
```

• Gasvnc works well for a remote observer.....

• Gasync works well for a remote observer.....

• *G*_{async} works well for a remote observer.....

Capturing Causality By Using Sets

• G_{assign} is a refinement of G_{async} .

```
\begin{array}{ll} G_{\rm assign} &=& {\rm client} \to {\rm server} : {\rm req}(\varepsilon) \langle {\rm true}; \varepsilon \rangle \langle {\rm true}; {\bf t} := {\bf t} + 1, {\bf c} := {\bf c} \uplus \{{\bf t}\} \rangle. \\ & {\rm server} \to {\rm client} : {\rm ans}(x) \langle x \in {\bf c}; \ {\bf c} := {\bf c} \setminus \{x\} \rangle \langle {\rm true}; \varepsilon \rangle. \\ & {\rm end} \end{array}
```

Some valid traces of asynchronous interactions (I)

Traces of permitted actions with the corresponding state change

cases	1st	2nd	3rd	4th	
(I) actions	req from clientA req from clientB req from clientA req from clientB	req from clientB req from clientA req from clientB req from clientA	1 to clientA 1 to clientA 1 to clientB 1 to clientB	2 to clientB 2 to clientB 2 to clientA 2 to clientA	
(I) states	$\boldsymbol{t}\mapsto \boldsymbol{1},\boldsymbol{c}\mapsto \{\boldsymbol{1}\}$	$\boldsymbol{t}\mapsto 2, \boldsymbol{c}\mapsto \{1,2\}$	$\boldsymbol{t}\mapsto 2, \boldsymbol{c}\mapsto \{2\}$	$\boldsymbol{t}\mapsto 2, \boldsymbol{c}\mapsto \{\}$	

- If server receives *n* requests, then (assuming the server issues the booking numbers starting from 1) as a whole the numbers which can be issued are among $\{1, 2, ..., n\}$.
- 2 If server issues a number from this set, the remaining numbers are what it can issue.

Some valid traces of asynchronous interactions (II)

Traces of permitted actions with the corresponding state change

	•		0	
cases	1st	2nd	3rd	4th
(II) actions	req from clientA req from clientB req from clientA req from clientB	req from clientB req from clientA req from clientB req from clientA	2 to clientA 2 to clientA 2 to clientB 2 to clientB	1 to clientB 1 to clientB 1 to clientA 1 to clientA
(II) states	$t\mapsto 1, c\mapsto \{1\}$	$\boldsymbol{t}\mapsto 2, \boldsymbol{c}\mapsto \{1,2\}$	$t\mapsto 2, c\mapsto \{\textcolor{red}{1}\}$	$\textbf{t} \mapsto \textbf{2}, \textbf{c} \mapsto \{\}$

- If server receives *n* requests, then (assuming the server issues the booking numbers starting from 1) as a whole the numbers which can be issued are among $\{1, 2, ..., n\}$.
- 2 If server issues a number from this set, the remaining numbers are what it can issue.

Some valid traces of asynchronous interactions (III)

Traces of permitted actions with the corresponding state change

cases	1st	2nd	3rd	4th
(III) actions	req from clientA req from clientB	1 to clientA 1 to clientB	req from clientB req from clientA	2 to clientB 2 to clientA
(III) states	$\boldsymbol{t}\mapsto 1, \boldsymbol{c}\mapsto \{1\}$	$\boldsymbol{t}\mapsto \boldsymbol{1},\boldsymbol{c}\mapsto \{\}$	$\boldsymbol{t}\mapsto 2, \boldsymbol{c}\mapsto \{2\}$	$\textbf{t} \mapsto \textbf{2}, \textbf{c} \mapsto \{\}$

- If S receives n requests, then (assuming the server issues the booking numbers starting from 1) as a whole the numbers which can be issued are among $\{1, 2, ..., n\}$.
- ② If *S* issues a number from this set, the remaining numbers are what it can issue.

Stateful Protocols (SP) Grammar

global stateful protocol

 $\Delta ::= \emptyset \mid \Delta, s[p]: T$

 $D ::= \emptyset \mid D, \mathbf{f} \mapsto e$

 $e ::= x | v | f | op(e_1, ..., e_n)$

 $G ::= p \rightarrow q : \{I_i(x_i : S_i) \langle A_i; E_i \rangle \langle A_i'; E_i' \rangle \cdot G_i\}_{i \in I}$ $T ::= p!\{I_i(x_i : S_i) \langle A_i; E_i \rangle \cdot T_i\}_{i \in I}$ $| G_1 | G_2 \qquad (G_1 \wedge G_2 = \emptyset)$ $p?\{I_i(x_i:S_i)\langle A_i;E_i\rangle,T_i\}_{i\in I}$ end end $\Theta = \langle \Gamma : \Delta : D \rangle$ endpoint spec

$$\begin{array}{lll} D ::= \emptyset \mid D, \mathbf{f} \mapsto e & \text{data storage} \\ A ::= e_1 = e_2 \mid e_1 > e_2 \mid e_1 \in e_2 \mid A_1 \land A_2 \mid \neg A \mid \forall x. \ A \\ E ::= E, \mathbf{f} := e \mid \text{if } A \text{ then } E_1 \text{ else } E_2 \\ S ::= \text{nat } | \text{bool } | \text{ string..} \mid S_1 \times S_2 \mid \text{ set } | \text{ map}(S_1, S_2) \end{array}$$

 $\Gamma ::= \emptyset \mid \Gamma, a : I(G[p]) \mid \Gamma, a : O(G[p])$ shared environment

 f: state, an attribute/ a field stored at a location (e.g. database) that a process can access / update.

local stateful protocol

session environment

The LTS of Specifications (output)

$$\ell ::= \overline{a}(s[\mathtt{p}] : G) \mid \overline{a}(s[\mathtt{p}] : G) \mid a(s[\mathtt{p}] : G) \mid s[\mathtt{p},\mathtt{q}]! l(v) \mid s[\mathtt{p},\mathtt{q}]? l(v)$$

$$= \underbrace{s \not\in \mathsf{dom}(\Delta), \, \mathsf{role}(G) = \{\mathtt{p}_i\}_{i \in l}}_{\langle \Gamma, a : \, \circ(G[\mathtt{p}_j]); \, \Delta, \{s[\mathtt{p}_i] : G \upharpoonright \mathtt{p}_i\}_{i \in l}; \, D\rangle} \xrightarrow{\overline{a}(s[\mathtt{p}_j] : G)}_{\langle \Gamma, a : \, \circ(G[\mathtt{p}_j]); \, \Delta, \{s[\mathtt{p}_i] : G \upharpoonright \mathtt{p}_i\}_{i \in l \setminus \{j\}}; \, D\rangle}$$

$$= \underbrace{s \in \mathsf{dom}(\Delta), \, \mathtt{p}_j \in \mathsf{role}(G)}_{\langle \Gamma, a : \, \circ(G[\mathtt{p}_j]); \, \Delta, s[\mathtt{p}_i] : \, G \upharpoonright \mathtt{p}_i; \, D\rangle}_{\langle \Gamma, a : \, \circ(G[\mathtt{p}_j]); \, \Delta; \, D\rangle}$$

$$= \underbrace{T = \mathtt{q}! \{l_i(x_i : S_i) \langle A_i; E_i \rangle, T_i'\}_{i \in l}, \, \Gamma \vdash v : S_j, \, \Gamma \models A_j \{v/x_j\}}_{\langle \Gamma; \Delta, s[\mathtt{p}] : T; \, D\rangle}_{\langle \Gamma; \Delta, s[\mathtt{p}] : T; \, D\rangle}$$

Definition of Trace

Definition (trace)

A *trace* (s, s', ...) is a sequence of actions which satisfy the standard binding conventions.

Definition (valid traces of Θ)

We define trace(Θ) a set of valid traces of Θ , $\forall s \in \text{trace}(\Theta), \exists \Theta'$ such that $\Theta \xrightarrow{s} \Theta'$.

- $\bullet \ trace(\Theta_{sync}) \subset trace(\Theta_{assign}) \subset trace(\Theta_{async}) \\$
- Both Θ_{assign} and Θ_{async} can verify
 - ► The number of inputs is more than the number of outputs.
 - Every assigned value is unique.
- But only ⊖_{assign} can verify
 - ► At every moment, the assigned value is smaller than the current number of inputs.

Legal Unit Permutation

Definition (legal unit permutation)

 $\ell_1\ell_2$ is *legally permuted* to $\ell_2 \cdot \ell_1$ when

- $\mathbf{0}$ ℓ_1 and ℓ_2 are both input session actions from different senders.
- 2 ℓ_1 and ℓ_2 are both output session actions to different receivers.
- **3** ℓ_1 is an output session action and ℓ_2 is an input one.
- One of them is $\overline{a}(s[p] : G)$ or $\overline{a}(s[p] : G)$ or a(s[p] : G), and ℓ_1 does not bind ℓ_2 .

Example

$$\begin{array}{c} \textit{permutable} \\ s[p, q_1]! \textit{l}_1(\textit{v}_1) \cdot s[p, q_2]! \textit{l}_2(\textit{v}_2) \end{array}$$

non-permutable
$$s[q, p]?l_1(v_1) \cdot s[p, q]!l_2(v_2)$$

$$s[p,q]!I_1(v_1)\cdot s[q,p]?I_2(v_2)$$

$$\overline{a}(s[p]:G)\cdot s[p,q]!I(v)$$

Process and Synchronous v.s. Asynchronous Observables

Definition (process)

A process (P, Q, ...) is a set of prefix-closed traces.

- Obs_s(P): the set of traces synchronously observed from P.
- Obs_a(P): the set of traces asynchronously observed from P.

Definition (synchronous and asynchronous observables)

- ② $Obs_a(P)$ is the set of all legal permutation variants of the traces in P.

Example

• If $\ell_1 \cdot \ell_2 \in \mathsf{Obs}_s(P)$ and $\ell_1 \cdot \ell_2 \curvearrowright \ell_2 \cdot \ell_1$, then $\ell_1 \cdot \ell_2 \in \mathsf{Obs}_a(P)$ and $\ell_2 \cdot \ell_1 \in \mathsf{Obs}_a(P)$.

Satisfaction

Definition (satisfaction up to observables)

- $P \models_{\text{sync}} \Theta$, when the two conditions hold:
 - **①** (safety) $Obs_s(P) \subset trace(\Theta)$.
 - ② (input consistency [Bodei 98]) Whenever $s \in \mathsf{Obs}_s(P)$ and $s \cdot \ell \in \mathsf{trace}(\Theta)$ where ℓ is an input, if P is capable to input ℓ after s, $s \cdot \ell \in \mathsf{Obs}_s(P)$.
- $P \models_{async} \Theta$, if the same conditions as above (neglecting the orange part) holds replacing each $Obs_s(P)$ with $Obs_a(P)$.

Asynchronous Verifiable

Definition (asynchronously verifiable specification)

We say Θ is asynchronously verifiable or simply asynchronous when $s \in \text{trace}(\Theta)$ and $s \curvearrowright s'$ imply $s' \in \text{trace}(\Theta)$.

Proposition

 Θ is asynchronous iff, for each P, $P \models_{\text{sync}} \Theta$ implies $P \models_{\text{async}} \Theta$.

Proposition

If $P \approx_{\text{async}} Q$ and $P \models_{\text{async}} \Theta$ then $Q \models_{\text{async}} \Theta$.

Commutativity (I): Predicate and Update Functions

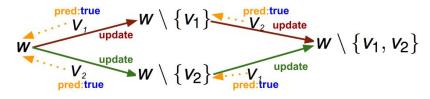
For an obligation ξ defined in Θ on role server

$$s[\text{server}] = \text{client!ans}(x: \text{int}) \langle x \in \mathbf{c} \; ; \; \mathbf{c} := \mathbf{c} \setminus \{x\} \rangle$$

$$\xi \stackrel{\text{def}}{=} \text{client!ans}(x: \text{int}) \langle x \in \mathbf{c} \; ; \; \mathbf{c} := \mathbf{c} \setminus \{x\} \rangle$$

$$\text{pred}(\xi) \stackrel{\text{def}}{=} \lambda x, \mathbf{c}. \langle \mathbf{c} \setminus \{x\} \rangle$$

 ξ is commutative over itself:



Commutativity(II)

Definition (commutativity)

Given Θ , let $\xi_1, ..., \xi_n$ be all the obligations usable in Θ . Then we say Θ is *commutative* if the following conditions hold.

- For (possibly identical) ξ_1' and ξ_2' from $\{\xi_1,...,\xi_n\}$, if both are inputs or both are outputs, then ξ_1' and ξ_2' are commutative.
- ② For distinct ξ'_1 and ξ'_2 from $\{\xi_1,..,\xi_n\}$, if ξ'_1 is an output and ξ'_2 is an input then ξ'_1,ξ'_2 is semi-commutative.

Commutativity Implies Asynchronous

 Θ is asynchronous when all obligations used in the specifications for the target process commute over each other up to legal permutations.

Proposition (Commutativity implies asynchronous)

If Θ is commutative then it is asynchronous.

Note that the other way round is not right.

Example

Assume the initial values of states \mathbf{c} and \mathbf{t} are both 0, and we have following local SP for role p in session s is:

$$s[p]: q_1!ans(\varepsilon)\langle true; \mathbf{c}=50 \rangle$$
 . $q_2!ans(\varepsilon)\langle true; \mathbf{t}=\mathbf{c}+10 \rangle$

It is asynchronous because it checks nothing . But it is not commutative. Consider $\ell_1 = s[p, q_1]! ans(\varepsilon)$ and $\ell_2 = s[p, q_2]! ans(\varepsilon)$. $\ell_1 \cdot \ell_2$ makes state t be 60, but $\ell_2 \cdot \ell_1$ makes state t be 10.

Specifications in Examples

Proposition

- \bullet \bullet _{async} and \bullet _{assign} are commutative thus are asynchronous.
- Θ_{sync} is not asynchronous.

Proof.

That Θ_{assign} (resp. Θ_{async}) is commutative can be easily proved by proving every pair ξ_i, ξ_j in Θ_{assign} (resp. Θ_{async}).

Proposition

With the stateful protocol (SP) grammar restricting operations on integers to be the addition, subtraction and the sets, then the commutativity of specifications is decidable.

Proof.

Based on [Zarba 02].

Related works

- There are many work on asynchronous equivalences and calculi such as
 - [de Boer, Kok, Palamidessi and Rutten 1991],
 - [Jifeng, Josephs and Hoare 1990],
 - [Honda and Tokoro 1991]
 - [Amadio, Castellani and Sangiorgi 1996]
 - **>** ...

but they do not treat the problem of asynchronous *stateful specifications*.

- [Bocchi, Demangeon and Yoshida TGC 12]'s work for the proof system with stateful logics based on the π -calculus.
- So far the same technical problem of semantics has not been discussed in the literature, as far as we know.

Future works

- Find out the necessary and sufficient sound characterisation for asynchronous specifications.
- Propose promising approaches to automatically translate a synchronous suitable stateful specification to an asynchronous suitable one.
- Deeper analysis of a Θ by identifying and formalising the elements of Θ as properties on traces. Then we can:
 - **1** describe the components ("requirements") of Θ ,
 - ② compare the expressiveness of Θ concretely,
 - design a semantically well-founded policy language under asynchronous-stateful environments.
- Apply the theory to specifications and runtime monitoring in a real-world distributed software infrastructure.

Thank you!

Appendix: the Standard Binding Conventions

A sequence of actions that satisfy standard binding conventions is:

- for $s \cdot \overline{a}(s[p] : G)$ or $s \cdot a(s[p] : G)$, s has no action $\overline{a}\langle s[p] : G \rangle$ or a(s[p] : G) or $s[p, q] \dagger I(v), \dagger \in \{?, !\}$.
- ② for $s \cdot \overline{a} \langle s[p] : G \rangle$, s has action $\overline{a}(s[p] : G)$, but no action a(s[p] : G) or $s[p,q] \dagger I(v), \dagger \in \{?,!\}$.
- of for $s \cdot s[p, q] \dagger l(v), \dagger \in \{?, !\}$, s has actions $\overline{a}\langle s[p] : G \rangle$ and $\overline{a}(s[p] : G)$, or a(s[p] : G).

For Example: ⊖_{assign}

 Θ_{assign} is the local specification of role server projected from G_{assign}

```
 \begin{array}{l} \langle \Gamma, \operatorname{ser}: \operatorname{I}(G_{\operatorname{assign}}[\operatorname{server}]); \\ \Delta, \{s_i[\operatorname{server}]: \operatorname{client}?\operatorname{req}(\varepsilon) \langle \operatorname{true}: \mathbf{t}:=\mathbf{t}+1, \mathbf{c}:=\mathbf{c} \uplus \{\mathbf{t}\} \rangle, \\ \qquad \qquad \qquad \operatorname{client}! \operatorname{ans}(x) \langle x \in \mathbf{c}; \mathbf{c}:=\mathbf{c} \setminus \{x\} \rangle\}_{i \in \{1,2\};} \\ D, \mathbf{c} \mapsto \{\}, \mathbf{t} \mapsto 0 \rangle \end{array}
```

For Example: ⊖_{assign}

 Θ_{assign} is the local specification of role server projected from G_{assign}

```
\langle \Gamma, \text{ser} : I(G_{assign}[\text{server}]);
 \Delta, s_1[server]: client?req(\varepsilon)\langle true; t := t + 1, c := c \uplus \{t\} \rangle.
                    client!ans(x)\langle x \in \mathbf{c} : \mathbf{c} \setminus \{x\} \rangle.
       s_2[server]: client?req(\varepsilon)(true; t := t + 1, c := c \uplus \{t\}).
                    client!ans(x)\langle x \in \mathbf{c}; \mathbf{c} := \mathbf{c} \setminus \{x\}\rangle\}_{i \in \{1,2\}};
 D, \mathbf{c} \mapsto \{\}, \mathbf{t} \mapsto \mathbf{0} \rangle
s_1[\text{client}, \text{server}]? \underline{\text{req}(\varepsilon)}
\langle \Gamma, \text{ser} : I(G_{assign}[\text{server}]);
 \Delta, s_1[server]: client!ans(x)(x \in \mathbf{c}; \mathbf{c} := \mathbf{c} \setminus \{x\}),
       S_2[server]: client?req(\varepsilon)(true; t := t + 1, c := c \uplus \{t\}).
                    client!ans(x)\langle x \in \mathbf{c}; \mathbf{c} := \mathbf{c} \setminus \{x\}\rangle;
 D, \mathbf{c} \mapsto \{1\}, \mathbf{t} \mapsto 1\rangle
```

Appendix: Θ_{assign} Approaches Θ_{sync} more than Θ_{async} .

Example

```
s' = s_1[client, server]?req(\varepsilon)s_1[server, client]!ans(1)s_1[client, server]?req(\varepsilon)s' \in Obs_s(P) whenever P \models_{sync} \Theta_{sync}.
```

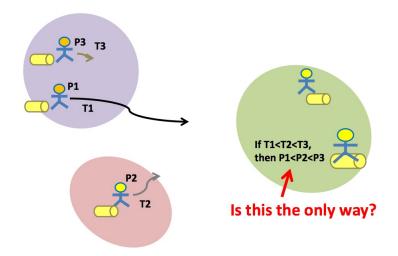
But Θ_{async} is not.

Example

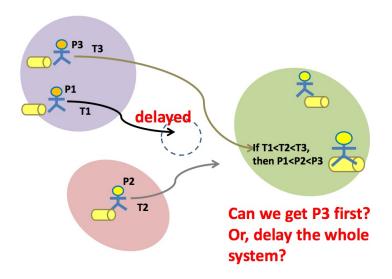
```
\textbf{s} = s_1[\textit{client}, \textit{server}]?\textit{req}(\epsilon) \cdot s_1[\textit{server}, \textit{client}]! \textit{ans}(3) \cdot s_1[\textit{client}, \textit{server}] \cdot s_1[\textit{client}, \textit{server}] \cdot s_2[\textit{client}, \textit{server}] \cdot s_2[\textit{client}, \textit{server}] \cdot s_3[\textit{client}, \textit{server}] \cdot
```

But $s \notin \mathsf{Obs}_s(P)$ whenever $P \models_{\mathsf{sync}} \Theta_{\mathsf{sync}}$.

Appendix: Timestamp? (Lamport, 1978)

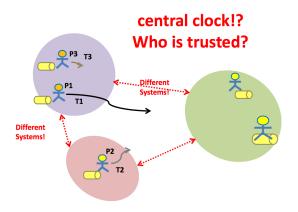


Appendix:Timestamp?



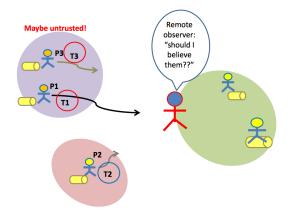
Appendix:Timestamp?

- Why don't we use timestamp?
 - ▶ to timestamp the messages from *different systems* is an issue.



Appendix:Timestamp?

- Why don't we use timestamp?
 - some sub-systems may not be trusted.



Appendix: Previous Works for Specification for Static and *Runtime* Checking for Distributed Computing

- The specification for runtime verification is needed but not trivial, especially when asynchrony is considered.
 - Consistent property for specifications of sender and receiver is not trivial because interaction messages may be still floating around the network:

```
G = \text{client} \rightarrow \text{server} : \text{req}(x : \text{string}).\text{server} \rightarrow \text{client} : \text{ans}(y : \text{int}).
client = \text{server}!\text{req}(x : \text{string}).\text{server}?\text{ans}(y : \text{int}).\text{end}
client?\text{req}(x : \text{string}).\text{client}!\text{ans}(y : \text{int}).\text{end}
```

Appendix: Previous Works for Specification for Static and *Runtime* Checking for Distributed Computing

- The specification for runtime verification is needed but not trivial, especially when asynchrony is considered.
 - Consistent property for specifications of sender and receiver is not trivial because interaction messages may be still floating around the network:

```
G = client \rightarrow server : req(x : string).server \rightarrow client : ans(y : int).

T_{\text{client}} = server?ans(y : int).end

T_{\text{server}} = client?req(x : string).client!ans(y : int).end
```

because server has not yet received message $s\langle \text{client}, \text{server}, \text{ans}\langle v \rangle \rangle$

